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A theoretical study of the spatial stability of Poiseuille flow in a rigid pipe to 
infinitesimal disturbances is presented. Both axisymmetric and non-axisym- 
metric disturbances are considered. The coupled, linear, ordinary differential 
equations governing the propagation of a disturbance that has a constant 
frequency and is imposed a t  a specified location in the fluid are solved numerically 
for the complex eigenvalues, or wavenumbers, each of which defines a mode of 
propagation. A series solution for small values of the pipe radius is derived and 
step-by-step integration to the pipe wall is then performed. In  order to ascertain 
the number of eigenvalues within a closed region, an eigenvalue search technique 
is used. Results are obtained for Reynolds numbers up to 10000. For these 
Reynolds numbers it is found that the pipe Poiseuille flow is spatially stable to all 
infinitesimal disturbances. 

1. Introduction 
The transition from laminar to turbulent flow of a viscous fluid in a pipe was 

first observed experimentally by Reynolds (1883). Subsequently, in an effort to 
explain the phenomenon of transition, numerous studies of the stability of fluid 
flow have been carried out. For viscous flow through a circular pipe, the theoreti- 
cal studies of temporal stability by Sex1 (1927a, a), Pretsch (1941), Pekeris (1948), 
Corcos & Sellars (1959), Lessen, Sadler & Liu (1968) and Burridge (1972) have all 
demonstrated stability to infinitesimal axisymmetric and non-axisymmetric 
disturbances that are applied at  an initial instant everywhere in the fluid and 
grow or decay with time. For the physically more realistic problem of spatial 
stability where a disturbance, imposed at  a specific location in the fluid, grows or 
decays with axial distance, both experimental (Leite 1959) and theoretical 
(Gill 1965) studies have also shown stability. However, these latter investiga- 
tions were carried out for axisymmetric disturbances only. For the non-axi- 
symmetric disturbance, experiments (Lessen, Fox, Bhat & Liu 1964; Fox, 
Lessen & Bhat 1968) indicate spatial instability but prior to this paper no 
theoretical analysis has been carried out. The present paper provides results of a 
theoretical analysis of the spatial stability of pipe Poiseuille flow to both axi- 
symmetric and non-axisymmetric infinitesimal disturbances. 
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2. Stability equations and boundary conditions 
I n  the theory of the stability of laminar flows the motion is decomposed into a 

mean flow (whose stability constitutes the subject of the investigation) and a 
disturbance superimposed on it. Then, starting with the continuity and Navier- 
Stokes equations for an incompressible Newtonian fluid, a set of linear partial 
differential equations is obtainedby neglecting the product of disturbance velocity 
components with themselves and their spatial derivatives. After this set has been 
made dimensionless each component, say $(r, 8, z, t ) ,  of the Fourier series corre- 
sponding to the arbitrary disturbance is assumed to be of the form 

$(r,  8, z ,  t )  = Re [$(r, 8, z, t ) ]  = Re @(r) exp (kx + i d -  iw t ) ] ,  

where Re denotes the real part of the complex functions $ and 3, r ,  8, x and t are 
the dimensionless radial, angular, axial and time co-ordinates, w is the real 
frequency, n the angular wavenumber and k the axial complex wavenumber. 
Substitution of such expressions for the disturbance pressure and velocity 
components into the original linear equations leads to the following set of four 
coupled, linear, ordinary differential equations : 

(D+i) V,+$e,+kEz = 0, I 

where D is the operator dldr,  R is the Reynolds number of flow, V,, ve, 8, and p are 
the dimensionless complex eigenfunctions for disturbance velocity components 
and pressure, and V ,  is the dimensionless mean velocity of flow given, for pipe 
Poiseuille flow, by V ,  = (1  - r2) .  R = 2rp Y l v ,  where rp is the radius of the pipe, Y 
is the average velocity and v is the kinematic viscosity of the fluid. 

The physical restrictions a t  the centre of the pipe require that fluid velocity 
and pressure be bounded and continuous at r = 0 (and at any other r for that 
matter). Therefore, following Batchelor & Gill (1962),  the boundary conditions 
at  r = 0 are 

(2.2) 

. 

- v,(O) = p ( 0 )  = 0 for n =i= 0, 
V,(O) finite, p(0 )  finite for n = 0. 

I 3,.(0) = Ve(0) = 0 for n =+= 1, 

V,(O)+iV,(O) = 0 for n = 1. 

The physical restrictions at  r = 1 for the rigid impermeable pipe wall, assuming 
no slip, are 

(2.4) E,(l) = E o ( l )  = Ijz(1) = 0 for all n. 
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With these boundary conditions the determination of the dimensionless 
complex wavenumber k for a given frequency w and Reynolds number R with n as 
a parameter is an eigenvalue problem. The flow is considered to be unstable when 
the disturbance grows with x and vice versa. I n  terms of k, stability is implied for 
k, < 0 and instability for k, > 0, where k, is the real part of k, ki being the imagi- 
nary part. 

3. Solution of disturbance equations 
The four coupled differential equations (2.1) are too complex to be amenable 

to analytical solution. Even for an axisymmetric disturbance ( m  = 0 ) ,  for which 
the set of four equations reduces to a set of three, an earlier analytical solution 
(Gill 1965) was mainly successful for only two particular types of disturbance: 
one confined to a region close to the wall and the other close to the centre of the 
pipe. The numerical method developed here is not limited by any such restrict- 
ions and can be extended to compressible flow in an elastic tube. 

Briefly, the eigenfunctions are expanded as a power series in r for r small. 
The series solution is carried up to a small but finite value of r because of practical 
difficulties in summing a very large number of terms. The solution can then be 
continued by any of the standard step-by-step integration techniques (Runge- 
Kutta or a predictor-corrector method) to the pipe wall. The whole procedure is 
iterated until the boundary conditions at the wall are satisfied, thus resulting in a 
value for the complex wavenumber k. 

For a non-axisymmetric disturbance, it is simpler to develop the series expan- 
sions of the eigenfunctions T$.(r) and 'ije(r) in terms of the combinations 

Oncef(r) and g(r) are known, it is simple to calculate Er(r) and go(?). The trans- 
formed form of (2.1) in terms off, g, ;ij, and j3 is easily obtained and the boundary 
conditions onfand g follow directly from (2.2)-(2.4). 

Let S be a vector such that S = (S1, AS',, AS',, AS',) = {f, S, Ea, F].  The series expan- 
sion for each eigenfunction is then assumed to be of the form 

AS',(?) = r'J(S~1+AS'23r+AS'3ir2+ ...+AS'~,rl-l+...) ( j  = 1 , 2 , 3 , 4 ) ,  (3.2) 

where the Xi, are complex constants with 

(861, Biz, Si3, si4) (47 Gi7 ul,, pi). (3.3) 
When (3.2) is substituted into the transformed form of (2.1) and the coefficients 

of ra in the resulting equations are set to zero for all a,  the values of a, that satisfy 
the boundary conditions a t  r = 0 are found to be 

{Ul, a2, a37.4) = {(n + I), (a- 1 ) 7  n, 4. (3.4) 

It is also found that Fi = Gt = U, = Pi = 0, if i is even. Thus, by redefining the 
Sii we can rewrite the series expansion (3.2) as 

Sj = r'~(AS',j+AS'2jr2+AS'33r4+ ...+AS'~jr2(1-1)+.,.) (j = 1,2 ,3 ,4) .  (3.5) 
a-2 
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From ( 3 4 ,  the recurrence relations for the 4, Gt, Ui and Pi are (Garg 1971) 
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I 

where any term having a factor with either a zero or negative subscript is set to 
zero, and 

(3.7) 

(3.8) 
1 El =z k2-R(kC1-iw),  

Bj = -kRCi 

Cj = coefficients in the series expansion of V,, 

(j = 2,3,  ...), 
E =  1 , 2 , 3  ,..., 

viz. V,(r) = Cl+C2r2+C3r4+ ... +Cm~2(m-1), 

so that for Poiseuille flow in a pipe C, = - C2 = 1, and the higher C's are all zero. 
Only three of the first four constants Fl, Gl, U, and Pl in the series expansions 

are independent owing to the relation 

Fl = - (3.9) 

Ta,king G,, U, and P, to be independent, all the 4, G,, V, and Pl with 1 > 1 can be 
expressed in terms of G,, U, and P, with the help of (3.9) and recurrence relations 
(3.6). This enables any eigenfunction to be expressed as a sum of three terms; for 
example, the axial velocity eigenfunction Ea(r) may be written as 

%(r) = %l(T) Gl + %2(T) Ul + % 3 W  e. (3.10) 

This results in three independent sets of solutions (v,.~, l i g1 ,  wsl,pl), (vT2, wg2, wE2,p2) 
and (wT3,vg3,ws3,p3). The set of equations (2.1) is thus equivalent to three sets 
since each of the three sets of solutions must satisfy (2.1) independently. Starting 
from the small value of r up to which the series solution is carried, each of the 
three sets of (2.1) is solved independently by a step-by-step integration technique 
to the pipe wall. It is the boundary conditions a t  the rigid pipe wall that preclude 
all but a certain combination of the three independent solutions for every eigen- 
function. These boundary conditions require that the disturbance velocity 
components be zero a t  r = 1, so that in view of (3.10) we must have 

(3.11) 
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For a non-trivial solution, then, the determinant d of the coefficient matrix in 
(3.11) must vanish or, since d is in general complex, its absolute value must be 
zero, that is, 

Id] = 0. (3.12) 

Further, since the elements of the determinant d are functions of the complex 
wavenumber k, frequency o and Reynolds number R, only certain combinations 
of these parameters will allow (3.12) to be satisfied, thus yielding the eigenvalue E .  

For an axisymmetric disturbance (n = 0) ,  the circumferential component of 
the disturbance velocity (E&))  can be arbitrarily assumed to vanish, thus 
providing an obvious simplicity which is lacking in the case of a non-axisymmetric 
disturbance. A more important consequence of this simplicity is that for an 
axisymmetric disturbance each eigenfunction can be represented as a combina- 
tion of only two linearly independent solutions, which are linked by the boundary 
conditions a t  the rigid pipe wall. In  contrast to a 3 x 3 determinant for a non- 
axisymmetric disturbance, therefore, a determinant which is only 2 x 2 deter- 
mines the eigenvalue for an axisymmetric disturbance. The analysis is thus 
similar to that given above. 

4. Eigenvalue search technique 
This investigation, being mainly concerned with locating possible spatial 

instabilities of Poiseuille flow in a pipe, requires that the whole (or a significant 
part) of the complex-k plane be explored for possible eigenvalues. This task is, 
unfortunately, not an easy one since (3.12), which determines the eigenvalue, is 
some high order polynomial in k whose exact nature is unknown. An iterative 
technique, if used for this purpose, has a major drawback in its tendency to bypass 
one eigenvalue and converge to another which is generally more stable. Thus, use 
of an iterative technique alone is highly inadequate. Other techniques used in 
this context are based on variations of the so-called grid methods which evaluate 
the determinant for every mesh point in the region of interest. The most severe 
disadvantage of any grid method, including a recent one by Scarton & Rouleau 
(1972), is the large amount of computer time used in evaluating the determinant 
at  sufficient mesh points inside and on the boundaries of a closed region of the 
k plane. 

Such complicated and expensive heuristics are obviated by a method that 
follows directly from the argument principle in complex-variable theory. For a 
function f ( x ) ,  analytic except for poles in the interior of a closed curve C in the 
z plane and continuously differentiable on C ,  Cauchy’s theorem gives (Nehari 
1969) 

or (4.1) N - P = 2N7427Ti = N ,  

where N and P denote respectively the number of zeros and the number of poles 
of f(z) within the closed region C (counted with their multiplicities), D is the 
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operator dldz and M is an integer denoting the net multiples of 27r by which the 
phase angle off(z) changes as x moves once around on C. 

For the present problem, each element of the determinant is a function of the 
complex eigenvalue k .  I n  fact, the determinant can be considered as some high 
order polynomial in k because of the recurrence relations for the coefficients in the 
series solution of the stability equations. Therefore, the determinant d ( k )  has no 
poles, that is, P = 0 in (4.1) and N = N .  Thus the problem of finding the number 
of eigenvalues within a closed region of the k plane is equivalent to counting the 
net multiples of 27r by which the phase angle of the determinant changes as k 
assumes values on the closed contour in the Ic plane. 

The method described above is most useful in establishing the number of 
eigenvalues inside a closed region of the k plane. Although a complicated tech- 
nique for isolating a number of these eigenvalues simultaneously rather than one 
a t  a time has been developed by Delves & Lyness (1967), it was not used for the 
present study because the main purpose here was not to find a number of stable 
inodes but to determine whether the pipe flow is spatially unstable to infinitesimal 
disturbances. To isolate an eigenvalue from the many suggested by the argument- 
principle method, the region is divided into smaller subregions which are investi- 
gated individually for possible eigenvalues. The process is repeated until the 
region containing an eigenvalue is sufficiently small for an iterative technique to 
converge easily to the true eigenvalue. 

5. Results 
As already stated, the flow would be spatially unstable if the real part of the 

complex wavenumber k were positive, that is, if there were eigenvalues lying in 
the first quadrant of the complex4 plane for waves propagating downstream. 
The regions in this part of the k plane were, therefore, explored for possible 
eigenvalues by means of the technique described in $4. For this purpose, the 
azimuthal wavenumber n was taken to be 0 or 1 and the Reynolds number R and 
frequencyw were varied so that their product w R  covered a wide range from 200 to 
10000 for each n. The net change in the phase angle of the determinant when 
k assumed values on the boundary of a closed region was found to be zero in each 
case, thus establishing that no eigenvalue existsinside any of the regions examined 
in the first quadrant of the k plane. Owing to limitations of the computer, these 
regions decreased in size with increasing values of the product wR. Some of the 
regions examined in the first quadrant are given in table 1. Discounting the 
highly unlikely possibility of an unstable mode lying beyond these regions 
(i.e. for values of a and p greater than those listed in table l),  it appears that the 
pipe Poiseuille flow is spatially stable to infinitesimal axisymmetric disturbances 
and the non-axisymmetric disturbance for which n = 1. Later, it will be shown, 
cf. a similar observation by Burridge (1972) for temporal stability, that the pipe 
flow is relatively more stable to disturbances with n > 1. For an axisymmetric 
disturbance, the result is in agreement with earlier studies (Leite 1959; Gill 1965). 
For a non-axisymmetric disturbance it is the first numerical confirmation of 
spatial stability. 
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n R w a P 
500 

4 000 
7000 
10 000 

500 
2 000 
5 000 
5000 

1.0 
0.5 
0.7 
1.0 
1.0 
0.1 
0.5 
1.0 

3.0 
3.0 
1.4 
1.0 
5.0 
2.0 
0-2 
0.1 

TABLE 1. Regions explored for unstable modes 
(0 < kr G a) ,  (0 G ki G p )  

4-0 
3-0 
2.2 
1.2 
4.0 
1.5 
2.0 
1.0 

While finding some stable modes, it was observed that the two parameters, 
frequency w and Reynolds number R, could be combined into one, the product 
wR. Thus, it was found that w R  governs, in an approximate manner, the values 
of kR. This provides an obvious simplification by reducing the number of 
parameters from two to one. For a non-axisymmetric disturbance, however, the 
mode shapes do have a marked difference for different combinations of w and R 
for which w R  is constant. Such was not found to be the case for an axisymmetric 
disturbance; there the eigenfunctions were almost the same for all the cases 
studied with this point in mind. In  view of the observation that wR is the govern- 
ing factor for krR and kiR, it may be pointed out that, if R is increased and w 
decreased indefinitely in order that the product wR remains constant, the mode 
will become less and less stable since kr (and also ki) will approach zero. Thus if an 
infinitesimal disturbance of a very low frequency is applied to the pipe Poiseuille 
flow a t  very high Reynolds numbers, the mean flow will stay distorted for a long 
distance downstream. 

Figure 1 shows the variation of kr and ki with R as the independent variable 
and w as a parameter for the least stable mode (one for which Ikrl is minimum) 
when n = 1. It is clear from this figure that for a fixed frequency the mode becomes 
less stable and has a larger wavelength a t  higher Reynolds numbers. Moreover, 
the asymptotic nature of the curves indicates that, though the mode becomes 
progressively less stable a t  higher Reynolds numbers, it  is unlikely that kr will 
ever become positive, indicating instability. Increasing the frequency at a fixed 
R causes only a slight increase in modal stability but a significant decrease in 
wavelength. If the frequency is doubled at a fixed Reynolds number, the wave- 
length reduces by a factor of about 2 so that the phase velocity is nearly constant. 
Similar conclusions were obtained for the least stable modes for n = 0 ,2  and 3. 

A comparison of the eigenvalues for the least stable mode for four different 
values of the azimuthal wavenumber n is provided by figure 2. Though the 
values of kr R and ki R do change with different combinations of w and R for which 
wR is constant, these changes are too small to be represented graphically for the 
cases investigated. For a constant value of wR, these cases provided a ten-fold 
variation of w and R. The lower portion of this figure helps to prove an earlier 
statement that n = 1 possesses the least stable of all modes, including the one 
for which n = 0. The possibility of such behaviour was speculated by Betchov & 
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r r 

FIGURE 3. Comparisons with previous work (Gill 1965) for an axisymmetric disturbance. 
R = 4000, o = 0.975. -, present work; - - -, Gill (1965). (a) ] V z  1 vus r.  ( b )  Phase of V: WS. r. 

Criminale (1 967, p. 229) on the basis that in a pipe Aow the production of vorticity 
vanishes identically for n = 0 but not for higher values of n. This implies, 
however, that n = 0 should be the most stable mode of all, which is not the case. 
Since n = 0 allows for non-zero values of V,(O) and p(0 )  while for n = 2,3,  . . . all 
the eigenfunctions are required to vanish at  r = 0,  it appears that the non-zero 
boundary conditions at r = 0 for n = 0 have a more significant effect than merely 
the non-zero production of vorticity for n = 2,3 ,  . , . . Continuing this argument 
further, both the non-zero boundary conditions €or V,  and Vs a t  r = 0 and the 
non-zero production of vorticity help to make the least stable mode of all occur 
whenn = 1. 

As far as hi is concerned, there is no such ambiguity; the value ofki:iR increases 
with higher values of n at a constant wR.,The curves for n = 1 and n = 2 lie 
between those for n = 0 and n = 3, and have been omitted here for clarity. It 
is interesting to note that the curves in figure 2 are almost linear, suggesting 
thereby that a simple power law may be used to relate k,R and k<R with wR. A 
relation connecting the power law constants with the parameter n is, however, 
rather complicated. 

Figures 3 (a)  and ( b )  compare some results of the present investigation for an 
axisymmetric disturbance with those of Gill (1965) for a Reynolds number of 
4000 and a dimensionless frequency of 0-975, so that wR = 3900. The axial 
velocity eigenfunction Vn(r) is represented on these figures in terms of its amplitude 
and phase for two modes m = 1 and m = 3.T The amplitude I G,(r) I was normalized 

f For the significance of m se0 Gill (1965). 
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FIGURE 4. Eigenfunctions for the least stable mode for rz = 1 
( R  = 5000, O) = 0.1). 

with respect to its maximum value before plotting. Gill’s results are shown by 
the dashed lines in these figures. For small r,  the agreement is excellent; in 
fact, the full and dashed lines are indistinguishable. For slightly larger r,  any small 
differences can be attributed to the errors inherent in taking values from another 
paper. There is an abrupt end to the dashed lines on these figures since Gill could 
not find the corresponding values beyond a certain radius owing to his assump- 
tion that r is close to zero. This also accounts for the large error in his results for 
the phase angle of Zz(r) when m = 1 and r 2 0.4. The present technique is, of 
course, valid over the whole region 0 < r < 1. 

Eigenfunctions for the least stable mode for various values of n are presented 
in figures 4, 5 and 6 in terms of their real and imaginary parts normalized with 



Linear spatial stability of pipe Poiseuilb flow 123 

- 1.0 
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r r 

r r 

FIGURE 5. Eigenfunctions for the least stable mode for n = 2 
(I1 = 5000, o = 0.1). 

respect to their individual maximum magnitudes; these normalized counterparts 
of V,, V,, 5, and jii are represented by $, T$,Z$ and ji*. These figures help to point 
out the effect of varying the azimuthal wavenumber n on the mode shape of the 
least stable mode. As n varies from 1 to 3, some of the eigenfunctions are affected 
more than the others. Owing perhaps to the non-zero values of V,(O) and 3,(0) 
for n = 1, the mode shape changes considerably as n varies from 1 to 2, the change 
from 2 to 3 in the value of n being rather insignificant for the mode shape. It was 
also found that, for a given set of parameters, the mode shape becomes more 
oscillatory as the mode becomes more stable. 
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FIGURE 6. Eigenfunotions for the least stable mode for rz = 3 
(R = 5000, = 0.1). 

6. Computational methods and accuracy 
The series solution was generally applied in the region 0 < F/ < 0.1, and from 

11 to 15 terms were required for convergence, the larger number of terms corre- 
sponding to the product wR approaching 10000. The convergence criterion was 
that the ratio of the last term retained to the partial sum up to a term preceding 
the last be less than For the numerical integration of the differential 
equations over 0.1 < r < 1 both Runge-Kutta and predictor-corrector methods 
of order L = 4 were used in order to  provide a check; step sizes varied from 0-01 
to 0-001. Following Ralston (1965, ch. 5 )  and Acton (1970, ch. 5) the accuracy 
was checked by solving some cases twice, once for a step size of h and then for +h. 
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Step size k (as calculated) k (corrected using (6.1)) 

0.0100 - 0.02083552035 + 0.519989299283 - 
0.0050 - 0.02083549559 + 0.519989254853 - 0.02083549394 + 061998925168i 
0.0025 - 0.02083549399 + 0.51998925191i - 0.02083549388 + 0.51998925173i 
0.0010 - 0.02083549388 + 0.519989251733 - 

TABLE 2. Values of k for various values of the step size 
(R = 10000, w = 0.5, n = 0) 

Step size k (as calculated) k (corrected using (6.1)) 

0.0100 - 0.01722848619 + 0.53525172047i - 
0.0050 - 0.01722769846 + 0.53525112413i - 0.01722764595 + 0.535251084376 
0.0025 - 0.01722764735 + 0.53525108570i - 0*01722764394+ 0.535251083143 
0.0010 - 0.01722764397 + 0.535251083173 - 

TABLE 3. Values of k for various values of the step size 
(R = 10000, w = 0.5, n = 1) 

According to Collatz (1966, p. 51) the error in the calculations with the smaller 
step size is approximately one part in (2L-  1) of the difference between the 
results of the two calculations; thus the corrected value yc is given by 

Some representative examples of the results for k: are shown in tables 2 and 3 
for n = 0 and 1. 

These results indicate that the largest step size yields at least 5 significant 
figures, while the smallest step size gives accuracy of 9 or more significant figures, 
as confirmed by the corrected values given by (6.1). This large number of signi- 
ficant figures was made possible by using double-precision arithmetic on a 
Univac 1108 computer, which carried 18 digits in each operation. Slightly less 
accuracy was obtained for n = 1 than for n = 0 since at  least twice as many 
calculations were required for n = 1. Any numerical instability (encountered 
only twice during the entire investigation) always disappeared with the use of a 
smaller step size, indicating thereby that round-off error was insignificant. 

7. Conclusions 
It was found that wR governs, in an approximate manner, the values of kR. 

This observation makes it possible to vary the product wR rather than w and R 
separately. The effect of Reynolds number, frequency and the azimuthal wave- 
number n on the relative stability and wavelength of a mode can be summarized 
as follows. 

(i) For fixed values of w and R, the least stable mode of all corresponds 
to n = 1. In  order of increasing stability, the sequence for the values of n is 
1 , 0 , 2 , 3  ,.... 

(ii) For constant w and R, the least stable mode (one for which IkTl is minimum) 
has the largest wavelength when n = 0. The wavelength decreases only slightly 
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as n takes on higher integer values, the effect a t  high values of wR being negligibly 
small. 

(iii) For a fixed n and w the least stable mode becomes less stable and has a 
larger wavelength as the Reynolds number is increased. 

(iv) The effect of frequency for constant n and R is similar to that in (iii) above 
except that the wavelength is almost doubled when the frequency is reduced by a 
factor of two. Thus the modal phase velocity remains almost constant. 

(v) For a fixed value of n, the least stable mode tends to be neutrally stable 
that is kr-+ 0 ,  as the frequency of the disturbance is decreased and the Reynolds 
number of flow is increased indefinitely. 

(vi) For constant n, w and R, the mode shape becomes more oscillatory as the 
mode becomes more stable, that is, as Ik,] increases. 

Theoretical results were obtained for Reynolds numbers up to 10000. For 
these Reynolds numbers it was found that the pipe Poiseuille flow is spatially 
stable to all infinitesimal disturbances. It may be inferred from the asymptotic 
behaviour of the eigenvalue trajectory for the least stable mode (figure 1) that 
instability does not occur even a t  higher Reynolds numbers. For the axisym- 
metric disturbance, the results are in agreement with previous theoretical 
and experimental results (Gill 1965; Leite 1959). For the non-axisymmetric 
disturbance, this is the first theoretical study of spatial stability. The experi- 
mentally observed instability for a non-axisymmetric disturbance (Lessen, Fox, 
Bhat & Liu 1964; Fox, Lessen & Bhat 19G8) is in contradiction with the present 
conclusion, but it is believed that the amplitude of the disturbance was finite in 
these experimental studies, as was true for the axisymmetric instability observed 
experimentally by Kuethe (1 956). 
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